+7 (495) 134-33-56

Как возникают провалы напряжения, к чему приводят и как от них защититься

Провалы напряжения, их характеристики и методы защиты

Изменения параметров входного напряжения в электросети во многих случаях связаны с провалами напряжения. Так в соответствии с ГОСТ 32144-2013 называют кратковременное снижение напряжения в конкретной точке электрической системы, когда оно опускается ниже порогового значения. После понижения, которое длится от 10 мс до одной минуты, напряжение восстанавливается до исходного значения.
Провалом считают понижение напряжения ниже 90 % от номинального. Безопасным будет уровень, который не превышает отклонение напряжения на 10 %. Очень часто провалы носят случайный характер, а регулярность их появления зависит от конструкции электрической системы, мощности и типа потребителей, точки наблюдения и природных явлений.
Так схематически выглядит провал напряжения
Чтобы охарактеризовать провал напряжения, используют такие характеристики, как глубина провала, длительность и частота возникновения. По статистике, большинство провалов имеют глубину 33–90 % и продолжаются 1,5–3 секунды. В среднем производственное предприятие от 10 до 30 раз в году сталкивается с провалами напряжения, причем в распределительной воздушно-кабельной сети они возникают в три раза чаще, чем в кабельной.

Чем прерывания напряжения отличаются от провалов

Прерыванием называют снижение напряжения в определенной точке электрической системы ниже порогового значения. При этом прерывание – это частный случай провала напряжения, когда оно опускается ниже 1 % от нормального рабочего напряжения.
Снижение напряжения до 0 % называют полным прерыванием. Продолжительность короткого прерывания – от 100 мс до трех с, длинного – более трех секунд. Чаще всего полное прерывание происходит из-за повреждения электрических сетей и обслуживающего их оборудования, процессов коммутации и резкого изменения мощности нагрузки.
Как отличить провал напряжения от прерывания

Причины появления провалов

Токи включения. Вызывают мощные электродвигатели, конденсаторы и другие устройства. При их включении резко увеличивается сила тока на короткое время, а сопротивление остается прежним, поэтому на такое же время напряжение уменьшается до критичной отметки (возникает провал).
КЗ (короткое замыкание) в сети низкого напряжения. В этом случае в электросети возникает ток КЗ. Его величина напрямую зависит от суммарного значения сопротивлений и длины кабеля – чем оно больше, тем меньше сила тока. При КЗ происходит падение напряжения по полному сопротивлению, в результате чего появляется кратковременный провал напряжения.
КЗ в сети среднего напряжения. Если в предыдущем случае последствия от кратковременного провала напряжения минимальные, в сетях среднего напряжения вреда от них намного больше. Здесь причинами провалов могут быть земляные работы, механические повреждения соединительной муфты, естественный износ кабеля, КЗ в воздушных сетях. Ток большой силы, который возникает в результате КЗ, приводит к провалу напряжения во всей сети.
КЗ в сети высокого напряжения. Наиболее частая причина – грозы и ошибочные включения (человеческий фактор).
Проблемы в распределительных цепях. Провалы напряжения возникают в случае повреждения участка цепи. Продолжительность и глубина провала зависят от топологии цепи, суммарного сопротивления на поврежденном участке и мощности подключенной нагрузки.

Последствия провалов

Отклонения, которые влияют на качество электроэнергии, негативно сказываются на работе электрооборудования. Конкретно провалы напряжения приводят к таким последствиям:
  • снижается интенсивность светового потока в лампах накаливания;
  • уменьшается чувствительность радио- и телеаппаратуры;
  • с перебоями работают рентгеновские установки;
  • возникают ложные срабатывания в электронных системах;
  • нарушается работа городского электротранспорта;
  • снижается мощность электродвигателей (плюс они быстрее изнашиваются).
В производственных условиях из-за провала напряжения может отключиться электрооборудование, что приведет к нарушению технологических процессов. Также возможно снижение качества точечной дуговой сварки или отключение газоразрядных источников освещения. Для компании такие последствия связаны, прежде всего, с простоями и материальными потерями:
  • упущенной прибылью;
  • затратами на восстановление оборудования;
  • потерями из-за срыва поставок сырья и его порчи;
  • затратами на техобслуживание;
  • оплатой труда специалистов;
  • возобновлением технологического процесса.
Также может пострадать репутация компании, если из-за ущерба, причиненного провалами, она не выполнит договоренности с контрагентами. Тем более это актуально, если речь идет о защите критически важного оборудования.

Меры защиты от провалов

До 75 % провалов напряжения возникают в результате КЗ в сетях среднего напряжения, вторая по популярности причина – пусковые токи. В большинстве этих случаев КЗ невозможно предотвратить, а вот в местах, где оно возникает по другим причинам, можно снизить его вероятность. Например, использовать системы АПВ (автоматического повторного включения). Они помогают избежать критичных последствий от провалов. АПВ повторно подключают отключенный участок сети под напряжение, в случае неуспеха повторяют попытку, и так несколько раз в зависимости от конфигурации цепи.
Системы, в которых возможно появление пусковых токов, дорабатывают таким образом, чтобы включение потребителей не провоцировало критичного падения напряжения. Оптимизация выражается в компенсировании провалов при резком падении и в возвращении нагрузки к номинальному значению. В отдельных случаях эффективным будет установить стабилизирующее оборудование на стороне потребителей.
Там, где реализовать перечисленные методы дорого или невозможно по техническим причинам, внедряют инструменты, фиксирующие провалы. Полученные с их помощью данные анализируют и используют для определения причины провала. В этом случае целесообразно использовать источники бесперебойного питания, которые в течение определенного времени (зависит от емкости аккумуляторных батарей) обеспечивают потребителей качественной электроэнергией без провалов и других отклонений.